If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10x-37=0
a = 3; b = -10; c = -37;
Δ = b2-4ac
Δ = -102-4·3·(-37)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{34}}{2*3}=\frac{10-4\sqrt{34}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{34}}{2*3}=\frac{10+4\sqrt{34}}{6} $
| --5-v/3=8 | | 4(n-1)=4 | | 3/4+4m/7=41/28 | | Y=2x2+7x+5 | | 2x^2+6x-63=0 | | 3(x+2=-5-2(x-3 | | 5x=19x+7 | | 25/15=104/n+30 | | 6/7+7m/5=93/35 | | -6x+9=4(5-×) | | 4x+3=9(x-2) | | 6x=-4x-20 | | 6p+5=19 | | 4x+3+2x=-3x+10 | | 7(-4x+2)=-154 | | 4x-1=7x+3 | | 2=3+x-2/x-4 | | 5m-11=17-2m | | 6x-9=2(x+4) | | 6x-9=2(x-4) | | x+2/x-2=7/3 | | x/3-1/2=x-4/9 | | 10-y=y-10 | | x/9+x/12=1 | | 0.03x+16=0.05x+4 | | 25x+3(5x)=4 | | 1.2=3x-x | | 7/y=21/42 | | (10.4-1.3b)+3.7b=-5.2 | | 3.2=-x+5x | | 0.04x+8=0.035x+20 | | 0.5x-8=2.5x+12 |